Telegram Group & Telegram Channel
Почему однопоточный Redis такой быстрый?

В прошлом посте предложила вам задачку: сравнить Redis и велосипедик на основе ConcurrentHashMap + Spring MVC.

ConcurrentHashMap — многопоточный, и вроде должен быть лучше. Но именно однопоточный Redis является базовым выбором для кэша.

Как однопоточный Redis справляется с нагрузкой?

Секрет в том, как он работает с запросами. Есть 2 основные модели:

🌊 Каждый запрос обрабатывается в своем потоке (thread per request).

Такая модель используется, когда мы подключаем Spring MVC. Наш велосипедик тоже на ней работает.

У каждого потока свой стэк, переменные изолированы. Код легко писать, читать и дебажить. Идеальный вариант для сложных энтерпрайзных задач!

Но есть недостаток - число запросов в работе ограничено числом потоков в ОС. Обычно это несколько тысяч.

Из-за этой модели наш велосипед и проигрывает:
😒 Миллионы запросов просто не дойдут до ConcurrentHashMap, максимум несколько тысяч.
😒 Прочитать и записать в мэп - простые операции. Отправлять таких малышей в отдельный поток - как забивать краном гвозди. Очень большие накладные расходы на каждый запрос.

Redis использует другую модель:

🏃 EventLoop - малое число потоков бешено переключаются между запросами. В работу можно взять миллионы запросов!

Такая схема используется в реактивных серверах типа Netty, поддерживает многопоточность в JS и питоне.

Поэтому Redis и побеждает наш велосипед: возни с потоками нет, ограничений на запросы нет. Вся мощь процессора уходит на полезную работу, поэтому даже один поток справляется с большим объемом задач.

Можно ли взять лучшее из двух миров? Использовать многопоточность вместе с EventLoop?

Можно! Один поток Redis не использует все доступные ядра процессора, поэтому добавить десяток потоков - вполне рабочая идея.

Такую схему используют KeyDB и DragonflyDB. На сайте публикуют бенчмарки, где они обходят Redis в 5-25 раз. 25 раз звучит слишком мощно, но про 5-10 раз можно верить.

Почему чаще используется Redis, а не более быстрые альтернативы?

Потому что Redis появился в 2009, используется на сотнях проектов и закрепился в сознании как базовое решение для кэша. Подводные камни известны, инфраструктура налажена, куча статей и докладов.

KeyDB и DragonflyDB - свежие БД пирожки. Один вышел в 19 году, другой в 22. На конференциях особо не светились, громких кейсов внедрения пока нет.

Энтерпрайз мир тяжело принимает новые технологии. Плюс не всегда нужно лучшее решение, иногда достаточно хорошего😊



tg-me.com/java_fillthegaps/612
Create:
Last Update:

Почему однопоточный Redis такой быстрый?

В прошлом посте предложила вам задачку: сравнить Redis и велосипедик на основе ConcurrentHashMap + Spring MVC.

ConcurrentHashMap — многопоточный, и вроде должен быть лучше. Но именно однопоточный Redis является базовым выбором для кэша.

Как однопоточный Redis справляется с нагрузкой?

Секрет в том, как он работает с запросами. Есть 2 основные модели:

🌊 Каждый запрос обрабатывается в своем потоке (thread per request).

Такая модель используется, когда мы подключаем Spring MVC. Наш велосипедик тоже на ней работает.

У каждого потока свой стэк, переменные изолированы. Код легко писать, читать и дебажить. Идеальный вариант для сложных энтерпрайзных задач!

Но есть недостаток - число запросов в работе ограничено числом потоков в ОС. Обычно это несколько тысяч.

Из-за этой модели наш велосипед и проигрывает:
😒 Миллионы запросов просто не дойдут до ConcurrentHashMap, максимум несколько тысяч.
😒 Прочитать и записать в мэп - простые операции. Отправлять таких малышей в отдельный поток - как забивать краном гвозди. Очень большие накладные расходы на каждый запрос.

Redis использует другую модель:

🏃 EventLoop - малое число потоков бешено переключаются между запросами. В работу можно взять миллионы запросов!

Такая схема используется в реактивных серверах типа Netty, поддерживает многопоточность в JS и питоне.

Поэтому Redis и побеждает наш велосипед: возни с потоками нет, ограничений на запросы нет. Вся мощь процессора уходит на полезную работу, поэтому даже один поток справляется с большим объемом задач.

Можно ли взять лучшее из двух миров? Использовать многопоточность вместе с EventLoop?

Можно! Один поток Redis не использует все доступные ядра процессора, поэтому добавить десяток потоков - вполне рабочая идея.

Такую схему используют KeyDB и DragonflyDB. На сайте публикуют бенчмарки, где они обходят Redis в 5-25 раз. 25 раз звучит слишком мощно, но про 5-10 раз можно верить.

Почему чаще используется Redis, а не более быстрые альтернативы?

Потому что Redis появился в 2009, используется на сотнях проектов и закрепился в сознании как базовое решение для кэша. Подводные камни известны, инфраструктура налажена, куча статей и докладов.

KeyDB и DragonflyDB - свежие БД пирожки. Один вышел в 19 году, другой в 22. На конференциях особо не светились, громких кейсов внедрения пока нет.

Энтерпрайз мир тяжело принимает новые технологии. Плюс не всегда нужно лучшее решение, иногда достаточно хорошего😊

BY Java: fill the gaps


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/java_fillthegaps/612

View MORE
Open in Telegram


Java: fill the gaps Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Java: fill the gaps from in


Telegram Java: fill the gaps
FROM USA